Skip to main content

2 posts tagged with "DuckDB"

View All Tags

Introducing Starlake.ai

· 2 min read
Abdelhamide El Arib
Starlake Core Team

We're excited to unveil Starlake.ai, a groundbreaking platform designed to streamline your data workflows and unlock the full potential of your data. 🚀

The Challenges We Solve

In the modern data landscape, businesses often face these challenges:

  • Overwhelming complexity in managing data pipelines
  • Inefficiencies in transforming and orchestrating data workflows
  • Lack of robust governance and data quality assurance

Starlake tackles these problems head-on, offering a declarative data pipeline solution that simplifies the entire data lifecycle.


Our Mission

  1. Simplify Data Management: Automate ingestion, transformation, and orchestration to reduce manual effort.
  2. Enhance Data Quality: Enforce schema validation, governance rules, and SLA tracking to ensure data consistency.
  3. Accelerate Insights: Deliver clean, transformed, and analytics-ready data faster and more reliably.

Core Capabilities

  • No-Code Data Ingestion: Seamlessly ingest and validate data from any source—no coding required.
  • Low-Code Transformations: Use YAML and SQL to apply transformation rules at scale.
  • Automated Workflow Orchestration: Simplify dependencies with Airflow and Dagster integrations.
  • Data Governance and Quality: Ensure schema enforcement, validation, and SLA tracking.
  • Multi-Cloud and On-Prem Support: Run on your preferred infrastructure, including Snowflake, Databricks, and BigQuery.

Why Starlake Stands Out

Starlake doesn’t just manage your data pipelines—it transforms them. Here’s how we compare:

FeatureStarlake.aiTraditional ETL Tools
No-Code Ingestion
Declarative Transformations
Automated Orchestration
Built-in Governance

Start Your Journey with Starlake

Getting started with Starlake is effortless:

  1. Join the Waitlist: Be among the first to explore Starlake Cloud.
  2. Integrate Your Data Sources: Quickly connect to your preferred databases and warehouses.
  3. Streamline Your Workflows: Start experiencing the power of automated, no-code pipelines.

Ready to Transform Your Data Workflows?

Starlake.ai is here to revolutionize how you manage, transform, and govern your data. Join the movement and discover a smarter way to handle data pipelines.

Learn more at Starlake.ai.

How to unit test your data pipelines

· 6 min read
Bounkong Khamphousone
Starlake Core Team

In today's data-driven landscape, ensuring the reliability and accuracy of your data warehouse is paramount. The cost of not testing your data can be astronomical, leading to critical business decisions based on faulty data and eroding trust. 

The path to rigorous data testing comes with its own set of challenges. In this article, I will highlight how you can confidently deploy your data pipelines by leveraging Starlake JSQLTranspiler and DuckDB, while also reducing costs. we will go beyond testing your transform usually written in SQL and see how we can also test our Ingestion jobs.

The art of mastering data pipelines

Mastering your data pipeline is a challenging art. A data pipeline generally contains the following phases:

  • Collection: Extracting data from sources
  • Ingestion: Loading the extracted data into the data warehouse
  • Transformation: A phase that ultimately adds value to the collected data

The table below summarizes the tests run by Starlake on Load & Transform jobs:

Check to run onIngestion TestTransform Test
Validate the filename pattern
Validate the file structure (number and types of attributes, input file format - CSV / JSON / XML / FIXED-WIDTH)
Check if loaded files or transform SQL SELECT statements  are materialized according to the defined strategy (APPEND / OVERWRITE / UPSERT_BY_KEY, SCD2 …)
Check for missing or unexpected records in the resulting table
Check if the resulting table has a correct schema
Check all expectations
Check time based query output with time freeze
The results of these automated tests are designed for both human review and CI/CD integration. For human review, a website is generated to help users easily identify failures and their causes. For CI/CD integration, a JUnit report is generated, and there is an option to specify a minimum coverage threshold. If the evaluated coverage falls below this threshold, the command will result in an error, and any failing tests will also trigger errors.

Untested SQL costs

Thanks to data pipelines unit testing, we drastically reduce the development cost. Not running tests seems to allow high project's velocity, thereby delivering value quickly. However, the cost of a feature does not stop at its simple development but encompasses all the efforts put in until the feature's completion. Below are some hidden costs.

  • Identifying bugs
    • Without unit tests, verifying development requires deploying the project. This deployment raises challenging questions about the deployment strategy and its rollback or correction procedures.
    • Verification might be carried out by a separate QA team, sometimes even outside the project team. This can lead to the use of feature flags to avoid deploying to production, complicating the implementation. Additionally, waiting for feedback from the QA team introduces delays, increasing the cost of fixing any bugs that arise.
    • Depending on the deployment strategy, verification may also be incomplete due to a lack of control over the test data used.
  • Maintenance and Evolution Complexity
    • Many of us have faced a massive query and struggled to make modifications without disrupting existing functionality, all while aiming for improvements like optimizing processing time. Rigorous unit tests can help with this. They allow us to enhance the expected outcomes in current datasets, create new ones, and compare the modified query results with these expectations. This significantly reduces the risk of regression.
  • Decreased productivity
    • The absence of automated tests often means manually re-running parts or all of the system to ensure correct integration, which can lead to spending time fixing collateral bugs and thus reducing overall productivity. As the project advances, more components need verification, making the process even more time-consuming. This significantly diminishes the willingness to refactor or revise code.
  • Promoting expertise
    • Without unit tests, teams often assign the same tasks to the same people, which hinders skill development and increases the risk of knowledge loss due to turnover.
  • Customer dissatisfaction
    • A project with uncertain product output quality often leads to dissatisfaction, frustration, and a loss of trust in the individual, the team, or the product.

We are all aware of the hidden costs associated with the absence of tests; in my opinion, these are the most significant. Therefore, we will explore how to manage a data pipeline.

Writing unit test in Starlake

Suppose we have the following transform. Starlake transform folder hierachy

We test it by creating the following hierarchy: Starlake test transform folder hierachy

This is then how it is executed Data pipeline unit test lifecycle

Starlake unit tests benefits

Running tests on a local DuckDB database instead of the target Data Warehouse has the following advantages:

  • Fast Feedback: Local execution is significantly faster than using a remote database due to network latency. Additionally, the local environment might be better suited for handling small volumes of test data.
  • No Execution Cost: Depending on the pricing model of the target database, creating temporary resources and executing queries can incur both execution and storage costs.
  • Setup and Cleanup of Automated Tests: Guarantee of resource isolation.
  • Credential Issues: Running tests against a target database requires credentials, which may pose security risks.

Conclusion

In this article, we have demonstrated how adopting unit testing, a crucial practice for software engineers, can significantly enhance the quality of our data pipelines. This approach not only reduces overall costs in the medium to long term but also ensures the maintenance of dynamic and enduring documentation. Additionally, implementing unit tests is essential for rigorous CI/CD processes, enabling seamless continuous data pipeline deployment.

If you encounter any issues while performing your tests locally, please report them on the Starlake GitHub repository. Your feedback is invaluable in improving local test coverage, empowering more data engineers to deploy their work confidently and smoothly. For further discussions and support, join our team on Slack.

We greatly appreciate your contributions. If you found this article helpful, please star the project on GitHub and share it on your social networks to help us reach a broader audience.